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Abstract—In this paper, we present a comparison between a
collection of Artificial Neural Networks (ANNs) —specifically,
Multilayer Perceptrons— and a collection of Symbolic Regression
(SR) models, all developed for predicting fish-deaths due to
infectious diseases in aquaculture. The implemented Machine-
Learning models are able to identify patterns that indicate an
increased risk of fish-deaths, and provide early warning-alerts
to fish-farmers and other stakeholders, enabling them to take
necessary measures to prevent or minimize losses of fishes. The
models were trained using real-world data acquired from a large
Greek fish-farming unit, and evaluated in a validation dataset
(distinct from the training dataset) based on their Mean Absolute
Error (MAE) performance. The study found that, for each disease
considered, the corresponding ANN model outperformed the
respective SR model in terms of MAE. However, the ANNs sacri-
ficed interpretability for higher performance, while the developed
SR models, despite lower performance, managed to produce
transparent and understandable mathematical expressions for
estimating fish-deaths. Overall, this study not only provides a
valuable method for generating early warning-alerts of patho-
genetic circumstances to the interested stakeholders, improving
the efficiency and sustainability of fish-farming operations, but it
also sheds light on the strengths and limitations of the developed
ANN and SR models.

Index Terms—Fish-Deaths Prediction, Aquaculture, Machine
Learning, Artificial Neural Networks, Symbolic Regression

I. INTRODUCTION

Fish farming plays a crucial role in the global food sup-
ply chain by providing a sustainable source of protein for
human consumption [10]. However, this industry is plagued
by various diseases that can cause significant losses in fish
populations [13]. These losses not only impact the economic
viability of fish-farming operations, but also have wider eco-
logical implications [5]. One effective way to mitigate losses
in fish populations is through the use of intelligent Machine
Learning (ML) techniques that provide early warning-alerts of
pathogenic circumstances to the interested stakeholders. Given
the critical nature of this issue, it has been extensively studied
in the literature; for a review of various ML techniques used

for the diagnosis of fish diseases in aquatic applications, the
interested reader is referred to [7].

The present article contributes to the above-mentioned line
of research. In particular, it presents a comparison between two
well-established and powerful ML models —namely, Artificial
Neural Networks (ANNs) on the one hand [6], and Symbolic
Regression (SR) models on the other hand [8], [11]— that
are utilized to predict deaths of fishes (sea basses), caused by
infectious diseases. Each one of these ML models has its own
strengths and weaknesses, which can be inferred by their key
differences that are summarized in the following points:

• ANNs are universal function approximators, [2], that
have a layered structure, where the input is processed
through multiple layers of interconnected nodes called
neurons. ANNs use a distributed representation of knowl-
edge, as the knowledge is encoded into the synaptic
weights of the connections between the neurons. SR
models, on the other hand, use a symbolic representation
of knowledge, in the sense that knowledge is encoded into
mathematical equations or symbolic rules that represent
the relationship between the input and output variables.

• ANNs are considered as black-box models, since it is
difficult to understand how such models arrive at their
decisions. This is not the case with SR models, which are
considered as white-box models, in view of the fact that
the relationships between the input and output variables
are represented using symbolic representations, making
it easy to understand how such a model arrives at a
certain decision. This higher interpretability of SR models
has made them a favourable tool used for extracting the
underlying laws of physical systems from experimental
data [8], [11].

The ML models developed herein were trained on a set of
real-world data, collected from a large fish-farming unit based
in Greece. Each ML model takes as input the corresponding



data of the last N days (that is, number of fish-deaths, water
temperature, administered amount of food, administered med-
icated food, antibiotics and vaccination doses), and produces
as an output the estimated number of fish-deaths, due to a
specific infectious disease, on the j-th forthcoming day.

The obtained results point out that, for each disease under
consideration, the ANN model outperforms the corresponding
SR model, as the former model achieves lower Mean Absolute
Error (MAE) than the latter model. The higher performance
of ANNs in terms of MAE is being paid by their non-
interpretability, in contrast to the developed SR models which,
despite their lower performance, manage to obtain transparent
and comprehensible mathematical expressions for estimating
fish-deaths.

The objective of this study is twofold.

• Firstly, it aims to provide a comprehensive comparison
of the performance of ANN and SR models used for
the early detection of fish-deaths. This comparison shall
yield valuable insights into the strengths and limitations
of each technique, enabling the identification of the most
suitable method for specific needs. It is worth noting
that comparisons between ANN and SR models used for
estimation are still relatively scarce in the literature; the
reader is, indicatively, referred to [12] and [1] for such a
comparison in the domains of Mechanical and Electrical
Engineering, respectively. Comparisons between ANN
and SR models used for estimating fish-deaths in aqua-
culture are, to the best of our knowledge, entirely absent.

• Secondly, by developing ML models trained on real-
world data, this study offers useful tools to improve
the overall sustainability and profitability of the fish-
farming industry. The timely information provided to
the interested stakeholders by these models enables an
effective management of diseases, reducing the risk of
fish-deaths and associated losses.

The remainder of this article is structured as follows: The
next section explores the profile of the available data, on which
the implemented ML models shall be trained. Section III
introduces the architecture of the approach followed, and
discusses the technical aspects of the developed ML models.
Section IV presents and comments on the obtained results.
The article closes with a brief conclusion section.

II. DATA PROFILE

The available data were obtained from a fish-farming unit
based in Greece, and cover the time-period from 01/06/2020
to 14/09/2022. The data include daily records concerning the
following quantities:

• Number of fish-deaths due to a specific infectious disease,
and total number of fish-deaths (due to all causes)

• Water temperature

• Administered amount of food

• Administered amount of medicated food

• Administered antibiotics doses

• Administered vaccination doses

The infectious diseases examined herein are those for which
there was a sufficient amount of data available to effec-
tively train the developed ML models; those diseases are the
diseases caused by the bacteria Pasteurella, Vibrio Harveyi
and Myxobacteria. Against this background, Figure 1 depicts
the time-series of the daily fish-deaths due to the examined
diseases, as well as the time-series of the daily total fish-
deaths (due to all causes), as recorded in the available data, i.e.,
during the time-period from 01/06/2020 to 14/09/2022.1 It
is evident that fish-deaths due to Pasteurella are more frequent
than fish-deaths due to Vibrio Harveyi and Myxobacteria,
which suddenly appear in rare time-intervals. As far as the
daily total fish-deaths are concerned, the two high peaks
appearing in Figure 1 are noteworthy. We note also that
the volume of the available data differs for each considered
disease. In particular, the number of samples/records referring
to fish-deaths due to Pasteurella is significantly greater than
the number of samples/records referring to fish-deaths due to
Vibrio Harveyi and Myxobacteria.

III. SYSTEM’S ARCHITECTURE

In this section, the architecture of the followed approach
is presented. As illustrated in Figure 2, for each infectious
disease under consideration D, a trained ML model —either an
Artificial Neural Network or a Symbolic Regression model—
takes as input a dataset of the last N days of a particular fish-
cage (i.e., data for the present day t0, data for the day before
today t−1, data for the day before yesterday t−2, and so forth),
and produces as an output a real number, which represents
the estimate for the fish-deaths, due to the disease D, on the
j-th forthcoming day t+j . The input data corresponding to a
particular day i concern the real-world available data discussed
in Section II; hence, the input data of the day i include the
fish-deaths due to D on the day i, the water temperature on the
day i, the amount of food given on the day i, the administered
medicated food of the day i, as well as the antibiotics and
vaccination doses administered on the day i. By combining
the output of each trained ML model (which pertains to a
specific disease), an estimate for the fish-deaths of the j-th
forthcoming day, due to all considered infectious diseases, is
produced. For our case study, it is assumed that each ML
model receives as input the data of a fish-cage for the last 10

1The time-series of the daily fish-deaths due to the examined diseases,
as depicted in Figure 1, present discontinuities, since the depicted fish-deaths
concern multiple (rather than a single) fish-cages of the fish-farming unit. This
means that such a time-series of Figure 1, firstly, represents all consecutive
daily fish-deaths recorded in a fish-cage A, then represents all consecutive
daily fish-deaths recorded in a fish-cage B, and so forth. We retain this
illustration of time-series for a better presentation. On the other hand, the time-
series of the daily total fish-deaths does not present such discontinuities, since
the recorded total fish-deaths refer to all fish-cages of the fish-farming unit.
Note, lastly, that the values of all time-series presented herein are normalized
(roughly) between 0 and 1.
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Fig. 1: Time-series of the daily fish-deaths due to the examined
diseases, as well as of the daily total fish-deaths (due to all
causes), from 01/06/2020 to 14/09/2022.
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Fig. 2: Architecture diagram of a trained ML model.

days (thus, N = 10), and produces as an output an estimate
for the 3-rd forthcoming day (thus, j = 3).2

It is noteworthy that the above approach for estimating fish-
deaths can also be applied as a binary classification — a
binary-classification approach would not capture the number
of fish-deaths, but only whether fish-deaths are expected or
not. This can be done as follows: In case the output of a
trained ML model is a positive real number (or a positive real
number greater than a certain pre-specified threshold), then
we assume that fish-deaths, due to a disease D, are indeed
expected on the j-th forthcoming day. In case the output of
the ML model is zero (or a number close to zero), then we
assume that no fish-deaths, due to a disease D, are expected
on the j-th forthcoming day. In the context of this binary-
classification approach, the generated output will now be a
list of binary numbers (0 and 1), rather than a list of real
numbers (as previously mentioned).

In addition to the ML models trained to estimate fish-deaths
due to infectious diseases, we also develop an ANN and an SR
model both trained for the estimation of the total number of
fish-deaths (due to all causes). The input of each such model
is the total number of fish-deaths recorded on each one of
the last 4 days, and the output of the model is a real number
representing the estimate for the total number of fish-deaths
of the next day.

Having outlined the basic architecture of the adopted ap-
proach, we discuss in the remainder of this section the tech-
nical details of the developed ANN and SR models.

A. Artificial Neural Networks

Let us first discuss the architecture and parameters of the
developed ANNs. All the ANNs considered have identical
structure, so we shall focus on a single ANN. Accordingly, the
alluded ANN is a conventional Multilayer Perceptron (MLP),
which consists of four layers, namely, one input layer, two
fully-connected (dense) hidden layers and one output layer (cf.
Figure 3). The input layer of the network is a passive layer
with no learnable parameters, that merely receives the data of
each sample of the dataset. Each fully-connected hidden layer
has 130 neurons (alias, units) and employs a Rectified Linear
Unit (ReLU) activation function. The output layer contains
a single linear neuron, which produces a real number that
represents the estimation of fish-deaths due to a particular
infectious disease. The ANN is compiled using a Mean Ab-
solute Error (MAE) loss function, and the well-known Adam
optimization algorithm, which is an extension of the stochastic
gradient descent [3]. For tackling the overfitting problem, the
dropout regularization technique was used where necessary.

2These specific numbers were chosen in consultation with the experts of
the fish-farming unit.
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Fig. 3: Architecture of an ANN in charge of a particular
disease.

By implementing dropout, selected neurons of the ANN are
randomly ignored (“dropped out”) during the training-phase,
and, as a consequence, no weight updates are applied to those
ignored neurons [9].

B. Symbolic Regression Models

Symbolic Regression (SR) is a method of interpretable
Machine Learning that reduces data to mathematical equations.
More precisely, SR is a type of regression analysis that
searches the space of mathematical expressions (symbolic ex-
pressions) to find the model that best fits a given dataset, both
in terms of accuracy and simplicity. Contrary to conventional
regression techniques that seek to optimize parameters for
a predefined structure of a regression model, SR does not
impose prior assumptions, and instead infers both the structure
of a regression model, as well as its parameters, directly
from the data. This in turn entails that SR is not affected
by human bias or gaps in the domain-knowledge, since it
does not require a priori specification of a regression model
(that is perhaps mathematically comprehensive from a human
perspective). Yet, the disadvantage of SR is the fact that it takes
considerable time to find a regression model that appropriately
fits the dataset, as the corresponding search-space is huge.3

Nevertheless, most SR algorithms prevent the combinatorial
explosion by applying evolutionary algorithms that iteratively
improve —over generations— the mathematical expression
that best fits the available data.

Such an evolutionary algorithm, based on the fundamental
concepts of Darwinian evolution, builds an initial population of
naı̈ve random formulas, by randomly combining mathematical

3As a matter of fact, the search-space in the context of SR is infinite, given
that there is an infinite number of regression models that will perfectly fit a
finite dataset.

building blocks, such as mathematical operators (i.e., +, −, ∗,
÷), analytic functions (e.g., sqrt, cos, sin, exp, log), constants,
and state variables. Each successive generation of formulas is,
then, evolved from the preceding one, by selecting the fittest
individuals from the population to undergo genetic operations.
Eventually, the algorithm takes a series of totally random
formulas, untrained and unaware of any given target function,
and makes them breed, mutate and evolve their way towards
a formula that best fits the data.

In our study, the development of the SR models was
carried out using Python’s gplearn tool, which extends
the scikit-learn machine-learning library to perform
Genetic Programming for Symbolic Regression [4].4 Table I
lists the hyper-parameters setup for the gplearn tool. The
explanation of each hyper-parameter is as follows: Population
Size is the number of individuals (mathematical formulas)
in each generation, Generations is the maximum number of
generations, Metric is the measure of an individual’s fitness
(herein is MAE), and Stopping Criteria expresses the fitness
value at which the evolution-procedure terminates. Function
Set contains the mathematical functions used when building
and evolving generations. Crossover Probability controls the
crossover method according to which genetic material between
individuals is mixed. Sub-tree Mutation Probability, Hoist
Mutation Probability and Point Mutation Probability con-
trol the respective mutation-operations. Lastly, the Parsimony
Coefficient is a constant that penalizes large individuals by
adjusting their fitness (MAE) to be less favourable for selection
— this penalty helps in producing less computationally costly
individuals which are, at the same time, more understandable.

Parameter Value

Population Size 5000

Generations 20

Metric Mean Absolute Error (MAE)

Stopping Criteria 0.01 (fish-deaths)

Function Set add, sub, mul, div, sqrt, cos,
sin, log

Crossover Probability 0.7

Sub-tree Mutation Probability 0.1

Hoist Mutation Probability 0.05

Point Mutation Probability 0.1

Parsimony Coefficient 0.05− 0.1

TABLE I: The setup of hyper-parameters for the gplearn
tool.

IV. RESULTS

Having discussed the architecture and parameters of the
developed ANN and SR models, this section is devoted to the
presentation of the derived results. Let us begin with Table II,

4https://gplearn.readthedocs.io/en/latest/intro.html

https://gplearn.readthedocs.io/en/latest/intro.html


which, for each infectious disease, presents the Mean Absolute
Error (MAE) obtained by the corresponding ANN and SR
models in the validation dataset. The validation dataset is
distinct from the training dataset, and its size is about 40%
of the size of the training dataset. It is clear that, for each one
of the three considered diseases, the ANN model trained for
the respective disease managed to achieve a lower MAE than
the corresponding SR model, an observation that testifies that
the ANN model outperforms the SR model in terms of the
obtained error-metric.

Disease ANN Model
MAE

SR Model
MAE

Pasteurella 60 65.1

Vibrio Harveyi 18 20

Myxobacteria 3 9.13

TABLE II: Mean Absolute Error (MAE) of the ANN and SR
models in the validation dataset.

Thereafter, Figures 4, 5 and 6 depict the estimation of the
developed ML models in the validation dataset, for each one of
the examined diseases. A graphical comparison of the curves
of the aforementioned figures confirms the fact that the ANN
models outperform the SR models. This is, perhaps, more
evident in the case of fish-deaths caused by Vibrio Harveyi
and Myxobacteria (Figures 5 and 6), where the estimation of
the corresponding SR models is unfortunately quite poor.

Let us now turn to the symbolic knowledge of the trained
SR models. Accordingly, we present subsequently the math-
ematical expressions encoded into each SR model developed
for the estimation of fish-deaths caused by Pasteurella, Vibrio
Harveyi and Myxobacteria:5

Deaths Past+3 =− 2 ·Deaths Past0 ·
√

Temp−3 +

+Deaths Past0 −
Deaths Past0

Food−4

Deaths V ib+3 =− V ACCINE I−1 +ANTIBIOTIC I−1

Deaths Myx+3 = Deaths Myx−9 ·MED FOOD I−1

The first thing worth noting is that all three mathemati-
cal expressions are quite simple and comprehensible. Some
comments on these equations are in order. The first equa-
tion asserts that the estimated number of fish-deaths due to
Pasteurella on the 3-rd forthcoming day (Deaths Past+3)
is a function of the number of fish-deaths due to Pasteurella
recorded today (Deaths Past0), of the water temperature
recorded three days ago (Temp−3), as well as of the amount
of food administered four days ago (Food−4). The second
equation asserts that the estimated number of fish-deaths due to

5Due to the randomness employed by the SR models, not all runs converge
into the same mathematical expressions. The mathematical expressions shown
herein are indicative.
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Fig. 4: Estimation (in the validation set) of the ANN and SR
models for the number of fish-deaths on the 3-rd forthcoming
day, due to Pasteurella.

Vibrio Harveyi on the 3-rd forthcoming day (Deaths V ib+3)
is a function of the amount of the vaccine “VACCINE I”
administered yesterday (V ACCINCE I−1), as well as of
the amount of the antibiotic “ANTIBIOTIC I” administered
yesterday (ANTIBIOTIC I−1). Lastly, the third equation
asserts that the estimated number of fish-deaths due to
Myxobacteria on the 3-rd forthcoming day (Deaths Myx+3)
is a function of fish-deaths due to Myxobacteria recorded
nine days ago (Deaths Myx−9), as well as of the amount
of the medicated food “MED FOOD I” administered yes-
terday (MED FOOD I−1).6 The mathematical equations
presented above, essentially, offer fish-farmers an accurate
and measurable means to describe the progression of fish-
mortalities caused by infectious diseases.

We close this section with the presentation of the results
concerning the total number of fish-deaths (due to all causes),
during the examined time-period. Accordingly, Figure 7 de-

6The units of measurement of all variables involved in the equations are
identical to those of the available data, discussed in Section II.
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Fig. 5: Estimation (in the validation set) of the ANN and SR
models for the number of fish-deaths on the 3-rd forthcoming
day, due to Vibrio Harveyi.

picts the estimation of the developed ML models in the
validation dataset, for the total number of fish-deaths on the
next day. For that case, the MAE of the corresponding ANN
model is 1900, whereas, the MAE of the SR model is 2070. It
follows then that, in that circumstance also, the ANN model
outperforms the SR model, a fact which is also confirmed from
the graphical comparison of the curves of Figure 7.

Lastly, the mathematical expression encoded into the SR
model developed for the total number of fish-deaths is the
following:

D+1 =

√(
D−1 +

1/4
√

1.8 ·
√

D0 − D0 − D−3

)
·
(
2 · D0 − D−2 + 0.6

)

The derived mathematical expression asserts that the total
number of fish-deaths on the next day (D+1) is a (rather
complex) function of the total number of fish-deaths recorded
on each one of the last four days (D0, D−1, D−2 and D−3).

Tim e

0

 0.2

 0.4

 0.6

 0.8

     1

D
a

il
y

 D
e

a
th

s
 d

u
e

 t
o

 M
y

x
o

b
a

c
te

ri
a

Real

Est im at ion

ANN model

Time

0

0.25

0.50

0.75

    1

D
a

ily
 D

e
a

th
s
 d

u
e

 t
o

 M
y
x
o

b
a

c
te

ri
a

Real

Estimation

SR model

Fig. 6: Estimation (in the validation set) of the ANN and SR
models for the number of fish-deaths on the 3-rd forthcoming
day, due to Myxobacteria.

V. CONCLUSION

In this article, we presented a novel comparison of a col-
lection of Artificial Neural Networks (ANNs) —particularly,
Multilayer Perceptrons— and a collection of Symbolic Re-
gression (SR) models, all developed for predicting fish-deaths
resulting from infectious diseases in aquaculture. The overall
study demonstrated that ANNs outperform SR models for
each disease under consideration, achieving a lower Mean
Absolute Error (MAE) compared to the latter. However, the
increased performance of ANNs in terms of MAE is being paid
by their black-box nature, making it challenging to interpret
their internal workings and decision-making processes. In
contrast, the SR models, despite their lower performance,
were able to derive transparent and comprehensible mathe-
matical expressions for each disease. The overall study not
only provides a system that generates early warning-alerts of
pathogenetic circumstances, contributing to the development
of more effective disease-management strategies in the fish-
farming industry, but also offers valuable insights into the



Tim e

0

    0.17

    0.34

    0.51

    0.68

    0.85

         1
D

a
il
y

 T
o

ta
l 

D
e

a
th

s
Real

Est im at ion

ANN model

Tim e

0

    0.17

    0.34

    0.51

    0.68

    0.85

         1

D
a

il
y

 T
o

ta
l 

D
e

a
th

s

Real

Est im at ion

SR model

Fig. 7: Estimation (in the validation set) of the ANN and SR
models for the total number of fish-deaths on the next day.

strengths and limitations of both ANNs and SR models.
We note that the comparison between ANN and SR models

conducted in this study is not intended to identify these ML
models as competitors. Instead, our intention is to demonstrate
how the two models can complement each other to obtain
a more accurate and robust estimation of the number of
fish-deaths.7 Indeed, a fish-farming unit can utilize both ML
models in conjunction, depending on the specific needs of a
task and the desired level of transparency.

Future work is to be devoted to the evaluation of more ad-
vanced ANN-based models and more sophisticated SR models
(such as the “AI Feynman” [11]) on the same domain.
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